Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation.
نویسندگان
چکیده
This review aims to cover experimental data on oxidative effects of low-intensity radiofrequency radiation (RFR) in living cells. Analysis of the currently available peer-reviewed scientific literature reveals molecular effects induced by low-intensity RFR in living cells; this includes significant activation of key pathways generating reactive oxygen species (ROS), activation of peroxidation, oxidative damage of DNA and changes in the activity of antioxidant enzymes. It indicates that among 100 currently available peer-reviewed studies dealing with oxidative effects of low-intensity RFR, in general, 93 confirmed that RFR induces oxidative effects in biological systems. A wide pathogenic potential of the induced ROS and their involvement in cell signaling pathways explains a range of biological/health effects of low-intensity RFR, which include both cancer and non-cancer pathologies. In conclusion, our analysis demonstrates that low-intensity RFR is an expressive oxidative agent for living cells with a high pathogenic potential and that the oxidative stress induced by RFR exposure should be recognized as one of the primary mechanisms of the biological activity of this kind of radiation.
منابع مشابه
Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation
This review aims to cover experimental data on oxidative effects of low-intensity radiofrequency radiation (RFR) in living cells. Analysis of the currently available peer-reviewed scientific literature reveals molecular effects induced by low-intensity RFR in living cells; this includes significant activation of key pathways generating reactive oxygen species (ROS), activation of peroxidation, ...
متن کاملAdaptive Response Induced by Pre-Exposure to 915 MHz Radiofrequency: A Possible Role for Antioxidant Enzyme Activity
Background: Over the past few years, the rapid use of high frequency electromagnetic fields like mobile phones has raised global concerns about the negative health effects of its use. Adaptive response is the ability of a cell or tissue to better resist stress damage by prior exposure to a lesser amount of stress. This study aimed to assess whether radiofrequency radiation can induce adaptive r...
متن کاملNew Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation
Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem ...
متن کاملVitamin E protects rat testis, eye and erythrocyte from oxidative stress during exposure to radiofrequency wave generated by a BTS antenna model
Background: Radio frequency wave (RFW) generated by mobile phones and wireless communication systems has been reported to cause adverse effects on reproductive function, vision and hematological parameters, possibly through oxidative stress. The aim of this study was to evaluate the effect of RFW generated bybase transceiver station BTS on oxidative stress in testis, eye and erythrocyte, and th...
متن کاملAlzheimer ’s Disease: Possible Mechanisms Behind Neurohormesis Induced by Exposure to Low Doses of Ionizing Radiation
In 2016, scientists reported that human exposure to low doses of ionizing radiation (CT scans of the brain) might relieve symptoms of both Alzheimer’s disease (AD) and Parkinson disease (PD). The findings were unbelievable for those who were not familiar with neurohormesis. X-ray stimulation of the patient’s adaptive protection systems against neurodegenerative diseases was the mechanism pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electromagnetic biology and medicine
دوره 35 4 شماره
صفحات -
تاریخ انتشار 2016